The Global Weak Solution for a Generalized Camassa-Holm Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GlobalWeak Solution for a Generalized Camassa-Holm Equation

and Applied Analysis 3 Differentiating (14) with respect to xx yields dd dddd ppxx = (mm m m) uu uuxx 󶀡󶀡ddt pp󶀱󶀱 ppxxt dd t [0t TT) t ppxx (0t xx) = mt (15)

متن کامل

Stability of peakons for the generalized Camassa - Holm equation ∗

We study the existence of minimizers for a constrained variational problems in H(R). These minimizers are stable waves solutions for the Generalized Camassa-Holm equation, and their derivative may have a singularity (in which case the travelling wave is called a peakon). The existence result is based on a method developed by the same author in a previous work. By giving examples, we show how ou...

متن کامل

The Local and Global Existence of Solutions for a Generalized Camassa-Holm Equation

and Applied Analysis 3 We consider the Cauchy problem of 1.2 , which has the equivalent form ut − utxx − k m 1 ( u 1 )

متن کامل

Blow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation

In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation

متن کامل

On the Camassa-Holm equation

This talk is focused on recent progress of studies for the Camassa-Holm equation. First, we will give a brief review on the derivations, well-posedness for the strong solution, blow-up phenomenon and existence of the weak solutions. Then, infinite propagation speed for the Camassa-Holm equation will be proved in the following sense: the corresponding solution u(x, t) with compactly supported in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/838302